CRYSTAL FIELD THEORY

In crystal field theory, bonding between metal and ligands is purely electrostatic. Ligands are considered as negative point charges.

WHAT HAPPENS WHEN LIGANDS APPROACH A METAL

D-orbitals of metal ions when there are no-surrounding ligands

When Ligand approaches the metal ions, there will be a change in energy of electrons in d-orbitals of Metal ions.

ORBITAL SPLITTING IN OCTAHEDRAL COMPLEXES

In Octahedral complex, Ligands approach along x,y,z axis. $d_x^2-y^2$ and d_z^2 orbitals align along the axis. So the **repulsion between Orbitals and Ligands** leads to increase in energy.

ORBITAL SPLITTING IN TETRAHEDRAL COMPLEXES

In tetrahedral complexes, Ligands approach between the x,y and z axis ,therefore d_{xy} , d_{yz} and d_{zx} has more energy than d_{x}^2 and d_{z}^2

Strength of ligands

 $C0 \approx CN^{-} > PPh_3 > NO_2^{-} > NH_3 > pyridine > CH_3CN > NCS^{-} > H_2O \approx C_2O_4^{2-} > OH^{-} > NCO^{-} > F^{-} > CI^{-} > SCN^{-} > S^{2-} > Br^{-} > I^{-} > O_2^{2-}$